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Abstract. We consider a system of fermions in the continuum case at zero temperature, in the strong-
coupling limit of a short-range attraction when composite bosons form as bound-fermion pairs. We examine
the density dependence of the size of the composite bosons at leading order in the density (“dilute limit”),
and show on general physical grounds that this size should decrease with increasing density, both in three
and two dimensions. We then compare with the analytic zero-temperature mean-field solution, which
indeed exhibits the size shrinking of the composite bosons both in three and two dimensions. We argue,
nonetheless, that the two-dimensional mean-field solution is not consistent with our general result in the
“dilute limit”, to the extent that mean field treats the scattering between composite bosons in the Born
approximation which is known to break down at low energy in two dimensions.

PACS. 74.20.Fg BCS theory and its development – 74.25.-q General properties; correlations between
physical properties in normal and superconducting states – 74.20.-z Theories and models of
superconducting state

1 Introduction

The BCS to Bose-Einstein (BE) crossover can be regarded
as an evolution from large overlapping Cooper pairs (BCS
limit) to small nonoverlapping (composite) bosons (BE
limit). At zero temperature, this crossover has thus been
characterized in the continuum case in terms of the corre-
lation length ξpair for pairs of opposite-spin fermions (in
units of k−1

F , where kF is the Fermi wave vector) [1].
It was found that, by reducing the strength of the

fermionic attraction at fixed density, ξpair increases mono-
tonically from its strong-coupling (BE) limit (equal to the
bound-state radius of the associated two-body problem)
to the Pippard value in the weak-coupling (BCS) limit.

It was emphasized recently that, as the particle density
increases for fixed value of the potential strength, the sys-
tem also evolves from the BE limit toward the crossover re-
gion, eventually reaching the BCS limit (provided certain
conditions on the fermionic attraction are fulfilled) [2].

In this context, one would naively expect ξpair to in-
crease monotonically, too, when evolving from the BE
limit toward the crossover region by increasing the parti-
cle density. A more careful analysis, however, shows that
ξpair should actually decrease with increasing density start-
ing from the BE limit for small density (“dilute limit”).
Consideration of this effect, which originates from the re-
pulsive interaction between the composite bosons, is the
main purpose of this paper.
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The composite bosons (which form as bound pairs
from the constituent fermions in the strong-coupling limit)
mutually interact via a residual repulsive interaction due
to Pauli principle [3,4]. This repulsive interaction, in turn,
affects the size of the composite bosons. Specifically, one
expects on physical grounds this interaction to reduce the
size of the composite bosons (with respect to the bound-
state radius of a composite boson in isolation), insofar as
the repulsive interaction itself decreases for decreasing size
of the composite bosons. A new equilibrium size for the
composite bosons thus results when combining the effect
of the repulsive interaction with the internal energy of a
composite boson, the new equilibrium size being smaller
than the original size of a composite boson in isolation.

We shall implement this qualitative idea by minimiz-
ing the expression of (twice) the fermionic chemical po-
tential 2µ = −ε + µB with respect of the size ξpair of a
composite boson, where ε represents the internal energy
of a composite boson (to be defined below) and µB is the
bosonic chemical potential determined by the mutual re-
pulsion between the composite bosons [5]. Both ε and µB

are, in fact, functions of ξpair; in addition, µB depends on
the density n.

We shall explicitly verify that the size-shrinking effect
is borne out by the analytic zero-temperature mean-field
solution for a point-contact interaction both in three [6]
and two [7] dimensions. In two dimensions, however, the
mean-field density dependence of ξpair does not agree with
what expected in the “dilute limit”. We attribute this dif-
ference to the poor treatment of the bosonic scattering
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within the zero-temperature mean field, which rests on the
Born approximation as the form of the mean-field bosonic
chemical potential implies. Since the Born approximation
in two dimensions is known to fail at low energy (which, in
turn, corresponds to the “dilute limit” of the Bose gas),
the effect of the bosonic interaction on ξpair cannot be
properly treated within the Born approximation.

We will therefore argue that a proper treatment of the
residual bosonic interaction (over and above the Born ap-
proximation), along the lines recently developed for the
three-dimensional case [8], should be especially relevant
to the two-dimensional case.

We have focused in this paper on the composite-boson
regime of the BCS-BE crossover problem, following pre-
vious work on this problem [4,8] which has emphasized
the importance of approaching the bosonization in re-
verse, that is, starting from the BE and evolving toward
the BCS region. Although this reverse approach is not
usually adopted in the literature, we prefer it over the
conventional BCS to BE approach which starts from the
BCS limit, insofar as the physics of the BE (composite-
boson) region is much richer than its counterpart in the
BCS limit. Specifically, the reverse approach enables one
to perform approximations in the BE limit which would
be a priori uncontrolled if one would start instead from
the BCS limit. These approximations, which are necessar-
ily more involved than those performed in the BCS limit,
are nevertheless appropriate also to the BCS limit [8]. In
addition, it has been shown that even numerical approxi-
mation schemes starting from the BE region are surpris-
ingly accurate also on the BCS side of the crossover, while
the reverse is not true [6].

The plan of the paper is as follows. In Section 2 we
provide the general physical argument for the size shrink-
ing of the composite bosons with increasing density in the
“dilute limit”, irrespective of dimensionality. In Section 3
we confront this general argument with the analytic zero-
temperature mean-field results for a contact potential in
the strong-coupling limit, both in three and two dimen-
sions. Numerical results for two different finite-range po-
tentials in three dimensions are also shown for comparison.
Section 4 gives our conclusions.

2 General argument for the size shrinking
of the composite bosons

We consider a system of fermions at zero temperature,
mutually interacting via an (effective) attractive potential
with a finite-range r0. For the sake of comparison with the
available analytic results in three and two dimensions, we
disregard lattice effects and consider the system embedded
in a homogeneous background (continuum case).

Composite bosons in isolation are defined when the
associated two-body problem admits a bound state (zero-
density limit). At small (albeit finite) density, composite
bosons are expected to retain their identity in the strong-
coupling limit of the original fermionic attraction, i.e.,
when the binding energy of the associated two-body prob-

lem is much larger than the strength of the residual in-
teraction between the composite bosons. Quite generally,
this residual interaction has a dominant short-range re-
pulsive part due to Pauli principle, which is active among
the constituent fermions as soon as the composite bosons
overlap. This overlap, in turn, increases (on the average)
when the size and/or the density of the composite bosons
increase.

More precisely, we shall assume that kFaF � 1, where
aF is the scattering length associated with the fermionic
attraction, as well as aF � r0. The former assumption
represents a “diluteness” condition, while the second as-
sumption is required to get a well-defined system of com-
posite bosons, for which the Pauli repulsion overwhelms
the attractive part of the bosonic potential originating
from the finite-range fermionic attraction (see Ref. [8],
footnote [25]). In this way, instabilities of the bosonic sys-
tem (like the one recently pointed out in Ref. [9]) will be
suitably avoided.

When the above conditions are satisfied, the compos-
ite bosons have a finite size and yet can be considered to
be well-defined entities. We assume, therefore, that the
standard results for the Bose gas can be used as far as
the mutual interaction of the composite bosons is con-
cerned, irrespective of their internal structure. To the in-
ternal structure we associate a pair wave function ψ and
a corresponding internal energy ε, obtained from (minus)
the expectation value 〈ψ|H2|ψ〉/〈ψ|ψ〉 of the two-fermion
Hamiltonian H2 over the pair wave function (where H2

contains the reduced kinetic energy and the attractive
two-fermion potential). Physically, −ε represents the en-
ergy required to form a composite boson in isolation with
a given internal wave function ψ for the pair of constituent
fermions. We thus regard the energy 2µ required to add
two fermions to the system as composed of two distinct
contributions, namely, (i) the (negative of the) above in-
ternal energy −ε and (ii) the energy µB required to add
eventually the composite boson to the system (with a
finite density of composite bosons already present). On
physical grounds, µB is related to the repulsive interac-
tion between the composite bosons and depends on their
size and density. Specifically, in three dimensions we take
(we set ~ = 1 throughout)

µB =
4πnBaB

mB
(1)

from the standard theory of the “dilute” Bose gas [10],
where nB = n/2 is the bosonic density, mB = 2m is the
mass of a composite boson in terms of the mass m of
the constituent fermions, and aB is the (positive) bosonic
scattering length due to the repulsive interaction between
the composite bosons. In two dimensions we take instead

µB =
4πnB

mB ln
(

1
nBr2

o

) (2)

from the theory of the two-dimensional “dilute” Bose
gas [11], where ro represents the range of the bosonic in-
teraction. From dimensional considerations, both aB in
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equation (1) and ro in equation (2) should be proportional
to the size ξpair of the composite bosons, defined by the
following functional:

ξ2
pair[ψ] =

∫
dr |ψ(r)|2 r2∫
dr |ψ(r)|2 · (3)

We set correspondingly aB = α3ξpair and ro = α2ξpair in
three and two dimensions, in the order, where α3 and α2

are positive constants. In this way, the bosonic chemical
potential µB = µB(ξpair) becomes itself a function of ξpair.

We determine next the function −ε(ξpair) by minimiz-
ing 〈ψ|H2|ψ〉/〈ψ|ψ〉 in the subspace of the wave functions
ψ corresponding to a given value of ξpair. In this way, the
equilibrium value ξ(o)

pair and the associated internal energy
εo are obtained from the global minimum of −ε(ξpair) (εo
coinciding with the binding energy of the associated two-
body problem). Near this minimum we set

ε(ξpair) = εo − Ad
(
ξpair − ξ

(o)
pair

)2

(4)

where the positive constant Ad depends in general on
the dimensionality d. This approximate expression can be
used when searching for the minimum of

2µ(ξpair) = − ε(ξpair) + µB(ξpair) (5)

to determine the new equilibrium value ξ̄pair in the pres-
ence of a finite (albeit small) density of composite bosons.
From equation (1) we then obtain for this new equilibrium
value in three dimensions:

ξ̄pair = ξ
(o)
pair −

2πα3

mBA3
nB; (6)

while from equation (2) we obtain in two dimensions:

ξ̄pair =ξ
(o)
pair−

π

mBA2ξ
(o)
pair

[
ln
(
α2ξ

(o)
pairn

1/2
B

)]2nB. (7)

Note that the value of ξ̄pair in the presence of a finite den-
sity of composite bosons is smaller than the value ξ(o)

pair for
a composite boson in isolation, both in three and two di-
mensions. Physically, this shrinking is due to the fact that
the decrease of the repulsive bosonic interaction (when
the composite bosons contract) prevails over the reduction
of the internal energy away from the original equilibrium
value εo.

In three dimensions, by inserting equation (6) into
equation (4), the difference ε(ξ̄pair)− εo is seen to decrease
quadratically with increasing density. The leading-order
correction to the internal energy ε is then quadratic in the
density. This should be contrasted with the density depen-
dence of the bosonic chemical potential, which is instead
linear to the leading order. It can be further checked that
adding to equation (1) for the bosonic chemical poten-
tial terms of higher order in the small parameter n1/3

B aB,
will not modify expression (6) for the leading-order depen-
dence of ξpair on nB in the dilute limit. Both the bosonic

chemical potential µB and the internal energy ε are thus
self-consistently calculated by our approach to the leading
order in the density.

To leading order, the binding energy −2µ(ξ̄pair) for a
composite boson embedded in the medium thus decreases
linearly with the density, owing to the linear dependence
of the bosonic chemical potential. This effect has been
evidenced in different contexts, namely, for the Bose con-
densation of excitons in semiconductors [5] and, more re-
cently [12], for the Bose condensation of atomic hydrogen.
In the latter case, a linear reduction of the bosonic binding
energy has been measured for increasing density, consis-
tently with the general argument presented in this paper.

3 Comparison with 3-d and 2-d mean-field
results

In this section, we consider without loss of generality an
attractive fermionic point-contact potential, for which the
analytic solution of the BCS to BE crossover at the zero-
temperature mean-field level is available, both in three [6]
and two [7] dimensions. We verify that this solution yields
a decrease of ξpair for increasing density, both in three and
two dimensions, in generic agreement with the results of
the previous section. Specifically, in three dimensions we
are able to recover the mean-field density dependence of
ξpair from the approach of the previous section, by relat-
ing aB to ξpair via the Born approximation. The analo-
gous attempt fails, however, in two dimensions because
the Born approximation (which is associated with mean
field) strongly overestimates the scattering between com-
posite bosons, thus disrupting the basic assumptions on
which the approach of the previous section rests.

We remark that the analytic results presented in this
section for a point-contact interaction describe also the
general behaviour for a finite-range potential in the “di-
lute” composite-boson regime, which is defined by the two
conditions kFaF � 1 and aF � r0 previously mentioned.
In this case, the range r0 of the potential is much smaller
than the two other length scales in the problem (k−1

F and
aF), so that the mean-field equations for a finite-range
potential get always mapped onto the mean-field equa-
tions for a point-contact interaction (with the same scat-
tering length). The region where the size-shrinking effect
is present (namely, the composite-boson region) coincides
thus with the region where the behaviour of the point-
contact interaction is “universal”. It is just this coinci-
dence which enables us to establish the size-shrinking ef-
fect as a general feature of the strong-coupling limit of the
BCS-BE crossover.

3.1 Three-dimensional case

For a three-dimensional point-contact potential, the low-
energy fermionic two-body scattering can be conveniently
regularized in terms of the scattering length aF. At finite
fermionic density, it is then possible to express all rele-
vant physical quantities (such as the superconducting gap
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∆ and the chemical potential) in terms of the dimension-
less parameter kFaF. This can be explicitly verified for the
analytic solution of reference [6] given in terms of the com-
plete elliptic integrals. Since kFaF � 1 in the BE limit,
physical quantities can further be expanded in powers of
kFaF in this limit.

In particular, for the pair coherence length one finds
from the analytic solution of reference [6]:

ξpair =
aF√

2

[
1 − 5

6π
(kFaF)3

]
(8)

at the leading order in the bosonic density nB = k3
F/(6π

2).
Equation (8) has been obtained by first expanding equa-
tion (30) of reference [6] in powers of 1/x0, by then in-
verting it to obtain x0 in powers of kFaF, and by in-
serting the resulting expression for x0 into the power
expansion of equation (31) of reference [6] for kFξpair. In
equation (8) (as well as in Eq. (31) of Ref. [6]) ξpair is
defined according to equation (3), with the BCS choice
ψBCS(k) = ∆/(2E(k)) for the Fourier transform (with
wave vector k) of the pair wave function [1], where E(k) =√

(k2/(2m)− µ)2 +∆2 as usual.
Note from equation (8) that in the zero-density limit

ξpair equals the value aF/
√

2 of the bound-state radius
of a composite boson in isolation. Note also that ξpair

decreases linearly with increasing density of the compos-
ite bosons. The mean-field analytic solution for a point-
contact interaction thus confirms our general prediction of
the size-shrinking effect discussed in the previous section
(cf. Eq. (6)).

By the same token, for the bosonic chemical potential
one finds from the analytic solution of reference [6]:

µB =
2aFk

3
F

3πm
=

8πnBaF

mB
· (9)

Comparison with equation (1) suggests then to identify
aB = 2aF in the BE (strong-coupling) limit. This result,
which was also obtained for the same model system within
the fermionic T-matrix approximation in the normal
state (i.e., above the superconducting critical tempera-
ture) [3,4], identifies kFaF with (3π2/4)1/3 times the “gas
parameter” n1/3

B aB for a “dilute” Bose gas.
Recall further that the general mapping procedure

from the original fermionic system onto the effective
bosonic system in the strong-coupling limit (as described
in Ref. [4]) provides in three dimensions the value

v(0) =
4πaF

m
(10)

for the strength of the “bare” bosonic potential (with all
wave vectors and Matsubara frequencies set to zero). One
then verifies that the Bogoliubov result

µB = nBv(0) (11)

is retrieved by the expression (9) [13].

It is interesting to show that not only the generic linear
density dependence but also the coefficients of the expres-
sion (8) can be reproduced by the variational principle of
the previous section, provided we take for α3 the value
2
√

2 (as determined from Eqs. (9, 8) and (1) to lead-
ing order in the density) and we assume the BCS form
ψBCS(k) = ∆/(2E(k)) for the Fourier transform of the
pair wave function. To this end, it is convenient to ex-
press initially 〈ψ|H2|ψ〉/〈ψ|ψ〉 and µB as functions of the
dimensionless variable xo = µ/∆ instead of ξpair, to mini-
mize then the resulting expression for 2µ with respect to
xo, and to use eventually the functional relation between
xo and ξpair (as determined in Ref. [6]) to obtain ξpair in
terms of kFaF. In the BE limit, where xo < 0 and |xo| � 1,
this relation reads:

kFξpair =
1√
2

(
3π

16x2
o

)1/3 (
1 − 1

4x2
o

)
(12)

to the leading significant orders. One finds:

〈ψBCS|H2|ψBCS〉
〈ψBCS|ψBCS〉

=
k2

F

2m

(
16
3π

)2/3

×
[

2|xo|4/3 − 4b|xo|2/3+
5
8
|xo|−2/3− 5

8
b|xo|−4/3

]
(13)

where we have set b = (3π/16)1/3 (kFaF)−1, while µB =
µB(xo) is given by equation (1) with aB = 2

√
2 ξpair and

with ξpair = ξpair(xo) given by equation (12).
At the leading order, only the first two terms within

brackets in equation (13) are relevant to the expression
of 2µ, whose mimimum is thus located at |x̄o| = b3/2.
At the next significant order, all terms within brackets in
equation (13) and the leading term in equation (12) are
relevant to the expression of 2µ, yielding the new mini-
mum at

|x̄o| = b3/2
(

1− 9
64 b3

)
· (14)

Inserting equation (14) into equation (12) one recovers
eventually the expression (8) for ξpair, as anticipated. The
fact that equation (8), obtained by the mean-field solu-
tion, can be reproduced with the correct numerical coeffi-
cients by the minimization procedure of the previous sec-
tion (when specialized to the BCS choice for the pair wave
function ψ), can be regarded as quite a compelling check
on the validity of our general argument of Section 2 and
of its underlying assumptions.

Finally, it is interesting to examine the behaviour of
ξpair as a function of the density for a finite-range po-
tential, for which the BCS-BE crossover driven by the
density becomes possible [2]. As in reference [2], we con-
sider the separable Nozières-Schmitt-Rink (NSR) poten-
tial V (k, k′) = V (1+k2/k2

0)−1/2(1+k′2/k2
0)−1/2 (with k =

|k|), and the non-separable Gaussian potential V (k,k′) =
V exp(−|k − k′|2/k2

0) (V < 0 in both cases). For these
potentials, an analytic solution for the BCS-BE crossover
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Fig. 1. Pair coherence length (in units of the characteristic
length k−1

0 of the finite-range fermionic potential) vs. kF/k0,
for the NSR (full line) and Gaussian (dashed line) potentials.
(A typical value of |V | (= 1.1Vc) above the critical value Vc

for the existence of a bound state in three dimensions has been
considered for both potentials.)

is lacking, even at the mean-field level. We have there-
fore solved numerically the coupled equations for the gap
function ∆(k) and the chemical potential µ. The pair-
coherence length ξpair has been then determined by using
the Fourier transform of equation (3), with the BCS choice
for the pair wave function ψ(k) = ∆(k)/(2E(k)). Results
are shown in Figure 1, which confirm the presence of the
size-shrinking effect in the “universal” composite-boson
region. Note, however, that the size-shrinking effect grad-
ually disappears by increasing further the density: ξpair

reaches a minimum at kF ∼ k0 and then starts increasing
with the density. The eventual increase of ξpair with kF,
when kF � k0, is a characteristic feature of a finite-range
potential, as it can be readily verified from the asymp-
totic expressions (4) and (5) of reference [2] for the gap
∆(kF) in the limit kF � k0. In this limit, as soon as the
system enters the BCS regime, we may use the BCS re-
sult ξpair ∼ kF/∆(kF) to obtain ξpair ∼ k−1

F exp
(

kFA
|V |mk2

0

)
,

where A is a numerical factor different for the NSR and
Gaussian potentials. For both potentials, ξpair is seen to
increase exponentially with kF for large kF, as far as k0 is
finite. The competition between this asymptotic behaviour
of ξpair when kF � k0 and the initial size-shrinking when
kF � k0, leads then to a minimum of ξpair when kF ∼ k0.

3.2 Two-dimensional case

In two dimensions, the zero-temperature mean-field ex-
pression for ξpair is reported in Appendix B of refer-
ence [6] in terms of the available analytic solution [7]. In
particular, at the leading significant order in the BE limit

one finds:

ξ2
pair =

2
3mεo

[
1− 38

15

(
4πnB

mBεo

)]
· (15)

For given value of εo, ξpair is thus seen to decrease linearly
with the density in the BE limit. One also finds for the
bosonic potential:

µB =
8πnB

mB
(16)

which is proportional to the density but independent
from the bosonic size. Note from equation (16) that the
Bogoliubov result µB = nBv(0) is retrieved by the mean-
field calculation even in two dimensions, since the strength
v(0) of the “bare” bosonic potential is given by

v(0) =
8π
mB

, (17)

as it can be explicitly verified by applying the prescriptions
of reference [4] to the fermion-boson mapping in the two-
dimensional case.

The mean-field expressions (15, 16) differ from the “di-
lute” Bose gas expressions (7, 2), respectively, as they
lack the logarithmic term in the denominator. Notwith-
standing the decrease of the size of the composite bosons
for increasing density obtained by equation (15), the two-
dimensional mean-field results appear thus to contradict
the picture of Section 2 for a “dilute” gas of composite
bosons. In particular, if one would use the Bogoliubov
expression (16) to implement the argument of Section 2,
the failure of the strength of the “bare” bosonic potential
in two dimensions to depend on the size of the compos-
ite bosons would not make it energetically convenient to
shrink the bosonic size at finite density. The size shrinking
obtained by equation (15) is therefore not consistent with
the general argument developed in Section 2.

We attribute the difference between the mean-field
and the “dilute” gas results to the poor treatment of
the boson-boson scattering within the zero-temperature
mean field, which rests on the Born approximation as the
form (16) of the bosonic chemical potential implies. Let us,
in fact, analyze the above results in terms of the outcomes
of potential scattering theory in two dimensions [14].
The Born approximation gives for the (dimensionless)
low-energy scattering amplitude f (2)

Born ∼ −mv(0), where
v(0) ∼ vor

2
o is typically proportional to the average

strength vo and range ro of the potential. The exact low-
energy result for the two-dimensional scattering amplitude
f (2) ∼ −1/ ln(kro), on the other hand, is independent of
vo and vanishes for vanishing wave vector (k → 0). In two
dimensions, therefore, the effect of summing an infinite
number of repeated scatterings drastically modifies the
functional dependence of the scattering amplitude on the
strength and range of the potential, and the perturbation
theory for the scattering amplitude breaks down [15]. In
contrast, in three dimensions f (3)

Born ∼ −mv(0) ∼ −aBorn

where v(0) ∼ vor
3
o and aBorn is the Born scattering length,

whereas f (3) ∼ −a is the exact low-energy result (a here
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being the full scattering length). That is, in three dimen-
sions going from the Born approximation to the exact low-
energy result merely changes the numerical value of the
scattering length.

For the composite bosons we are specifically interested
in, the strength vo must be proportional to the binding
energy εo for dimensional reasons, and the only avail-
able length scale is proportional to (mεo)−1/2. This yields
v(0) ∼ εo(mεo)−d/2, which corresponds to equations (10)
and (17) for d = 3 and d = 2, respectively, implying
that the characteristic strength and range of the potential
cannot be independently varied for the composite bosons.
It is this feature which, in turn, makes v(0) independent
from the size of the composite bosons in two dimensions.
The Born approximation to the two-dimensional scatter-
ing amplitude for the composite bosons, therefore, not
only lacks the functional form of the exact low-energy re-
sult, but even fails to yield any dependence on the size of
the composite bosons whatsoever.

From the above considerations, it is thus evident that
in two dimensions the scattering rate between the compos-
ite bosons is overestimated within the Born approximation
with respect to the true low-density result, in such a way
that the “dilute limit” cannot be achieved at fixed density.
Consequently, the physical picture adopted in Section 2 of
a system of well-defined weakly interacting bosonic enti-
ties is bound to break down within mean field.

4 Concluding remarks

In this paper, we have discussed the size shrinking of
composite bosons as a general physical result occurring
in the “dilute limit”. We have also verified that this gen-
eral result is correctly reproduced by the zero-temperature
mean-field treatment in three but not in two dimensions.
We have related the failure in two dimensions to the break
down of the Born approximation at low energy. In addi-
tion, we have noted a peculiar relation between the effec-
tive strength and range of the potential acting between
composite bosons.

For the three-dimensional case, the relevance of includ-
ing the mutual interaction between the composite bosons
in the strong-coupling (BE) limit has been emphasized
some time ago in references [5,16]; more recently, the sig-
nificance of treating the scattering between the compos-
ite bosons beyond the Born approximation has been ad-
dressed in reference [8]. We have argued here, however,
that the failure to account for the effects of the bosonic
interaction is more severe in two than in three dimen-
sions, because the Born approximation breaks completely
down in two dimensions. By the same token, we also ex-
pect that the boundary in the phase diagram between the
Bose-Einstein and crossover regions, discussed in refer-
ence [2] within mean field, should be significantly modified
by a proper treatment of the bosonic interaction, along the
lines recently developed for the three-dimensional case [8].

It is further clear that the criticisms recently raised
to the fermionic T-matrix approximation when applied to
the normal phase in three dimensions (which in the strong-
coupling limit has been proved to reduce to the Born ap-
proximation as far as the scattering between composite
bosons is concerned [8]) are even more appropriate for
the two-dimensional case where the Born approximation
fails completely. This remark makes it somewhat ques-
tionable the use of the fermionic (self-consistent) T-matrix
approximation in two dimensions [17,18], to describe the
tendency toward the formation of preformed pairs above
the superconducting critical temperature, at least as the
strong-coupling (bosonic)limit is approached.
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